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Abstract

The turmoil in the capital markets in 1997 and 1998 has highlighted the need for

systematic stress testing of banks’ portfolios, including both their trading and lending

books. We propose that underlying macroeconomic volatility is a key part of a useful

conceptual framework for stress testing credit portfolios, and that credit migration

matrices provide the specific linkages between underlying macroeconomic conditions

and asset quality. Credit migration matrices, which characterize the expected changes in

credit quality of obligors, are cardinal inputs to many applications, including portfolio
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risk assessment, modeling the term structure of credit risk premia, and pricing of credit

derivatives. They are also an integral part of many of the credit portfolio models used by

financial institutions. By separating the economy into two states or regimes, expansion

and contraction, and conditioning the migration matrix on these states, we show that

the loss distribution of credit portfolios can differ greatly, as can the concomitant level

of economic capital to be assigned. � 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The evolution of modern risk management can be traced back to Markowitz
and his portfolio theory for investments. His fundamental concept of diversi-
fication, of considering the joint distribution of portfolio returns, has gradually
migrated to risk management. Market risk measurement techniques were the
first to mature, mainly due to the richness of available data. Risk managers
now routinely measure portfolio change-in-value distributions and compute
statistics such as value-at-risk (VaR), which are used to determine trading
limits and assess risk capital. Moreover, the regulatory community has broadly
accepted such a model-based approach to assessing market risk capital. On the
credit risk side, however, even with the new BIS accords of June 1999 (BIS
publication no. 50, 1999), formal credit portfolio models (CPMs) are not
permitted for use in the determination of bank credit risk capital. Nevertheless
CPMs are becoming more widespread in their use among financial institutions
for economic capital attribution, and as the use of new risk transfer instru-
ments such as credit derivatives increases, so by necessity will the use of
CPMs. 3

Recent turmoil in the capital markets has highlighted the need for systematic
stress testing of banks’ portfolios, including both their trading and lending
books. This is clearly easier said than done. Although we have a wealth of data
at our disposal in market risk, even there it is not obvious how best to im-
plement stress testing. A short decision horizon, one on the order of hours or
days, forces the thinking towards specific scenarios or the ‘‘tweaking’’ of vol-
atilities and correlations between dominant risk factors. Particularly the latter
is important when designing a strategy for stress testing, as the LTCM debacle
so poignantly demonstrated (Jorion, 1999). It appears, for example, that cor-
relations increase during times of high volatility (Andersen et al., 2000).

3 For insightful comparisons of various CPMs, see Koyluoglu and Hickman (1998), Saunders

(1999) and Gordy (2000).
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Much less, however, is known about stress testing credit portfolios, and both
practitioners and regulators are clamoring for guidance. We propose that
underlying macroeconomic activity should be a central part of a useful con-
ceptual framework for credit portfolio stress testing, and that credit migration
matrices provide the specific linkage between underlying macroeconomic
conditions and asset quality. Credit migration matrices, which characterize the
expected changes in credit quality of obligors, are cardinal inputs to many
applications, including portfolio risk assessment, modeling the term structure
of credit risk premia, and pricing credit derivatives. 4 They are also an integral
part of many of the CPMs used by financial institutions. By separating the
economy into two states or regimes, expansion and contraction, and condi-
tioning the migration matrix on these states, we show that the loss distribution
of credit portfolios can differ greatly, as can the concomitant level of economic
capital to be assigned. We believe, therefore, that our analysis provides a useful
framework for stress testing a credit portfolio using any of the CPMs currently
available.

The paper proceeds as follows. In Section 2 we review the ways in which
asset values are tied to credit migration. In Section 3 we describe the ratings
data on which our subsequent migration analysis depends and proceed in
Section 4 to discuss estimation issues and the properties of the migration
matrices. In Section 5 we integrate business cycle considerations into a mi-
gration analysis, and in Section 6 we apply our methods to stress testing a
credit portfolio using CreditMetricsTM. We conclude and offer suggestions for
future research in Section 7.

2. Asset values and credit migration

Let us consider a simple structural approach to modeling changes in the
credit quality of a firm. The basic premise is that the underlying asset value
evolves over time (e.g. through a simple diffusion process), and that default is
triggered by a drop in firm’s asset value below the value of its callable liabilities.
Following Merton (1974), the shareholders effectively hold a put option on the
firm, while the debtholders hold a call option. If the value of the firm falls
below a certain threshold, the shareholders will put the firm to the debtholders.
The concept is shown schematically in Fig. 1.

Assuming that changes in a firm’s asset value can be related to a single
systemic factor (for instance, some measure of the state of the economy) via a
factor model, conceptually not unlike the CAPM, results in the common
specification

4 There is a rich literature on bond rating drift and migration, which we do not seek to address

here. See Altman and Kao (1991, 1992) and Nickell et al. (2000).
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DAj ¼ ajn þ rjej;

where DAj is the change in standardized asset value (i.e. with a mean of zero
and a standard deviation of one) for firm j, n is the systematic risk factor that
denotes the state of economy, e is a random shock with zero mean and unit
variance, aj (also known as the factor weight) is the correlation of changes in
firms asset value with changes in economic factor n, and rj is the magnitude of
the residual volatility in asset value not explained by the systemic risk factor. In
the special case of a homogeneous portfolio, when all firms have the same
factor weight (aj ¼ ak ¼ a), the above one-factor model can be re-written as

DAj ¼
ffiffiffi
q

p
n þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� qÞ

p
ej;

where (q ¼ correlðDAk;DAjÞ ¼ a2) is the asset correlation between any two
firms in the portfolio. The coefficient of the second term comes from the
simplifying assumption that DA, n, and ej all have unit variances. The first term
in the equation drives systematic credit risk, while the second term drives
idiosyncratic credit risk. Conceptually the systematic (economic) factor will
become important later when we consider rating dynamics conditional on the
economy. So-called default correlation enters through n.

Assuming that changes in asset value are normally distributed, the default
probability can be expressed as the probability of a standard normal variable
falling below some critical value. Similarly, thresholds can be established for

Fig. 1. Distribution of future asset values, and expected default frequency.
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transitions to other rating states. This is graphically represented for a BBB-
rated issuer in Fig. 2.

As Fig. 2 shows, these asset value thresholds can also be modeled as return
thresholds Zi, with i being the credit class. If the actual asset return DAj now
falls between two asset return thresholds Zi and Ziþ1 with Ziþ1 < Zi, whereby
iþ 1 is the credit class below i, the company’s rating next period will be i. In
standard implementations of Merton’s approach, the percentage changes in
asset value are normally distributed with mean l and standard deviation r.
Credit portfolio management models such as CreditMetricsTM moreover ad-
justs the asset returns to be standard normally distributed. Given these as-
sumptions and the probabilities from the actual transition matrix, every asset
return threshold corresponding to a specific credit rating can be computed.
Employing the empirically estimated expected default frequency (EDF) for a
specific initial rating class, the asset return threshold for the default state can be
derived by the following relationship:

EDF ¼ UðZDÞ;
ZD ¼ U�1ðEDFÞ;

where Uð�Þ denotes the cumulative standard normal distribution.
The remaining thresholds can be computed similarly, because for all non-

default rating categories with the exception of the highest rating class the
following equation holds:

qij ¼ UðZjÞ � UðZjþ1Þ;

with qij indicating the actual probability of migrating from credit class i to
category j. To calculate, for example, the upper asset return threshold for

Fig. 2. Asset return distribution with rating thresholds for a BBB issuer.
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migrating to CCC, Zjþ1 would be the above-computed asset return threshold
for the default state ZD. Finally, for the transition probability to the highest
rating class, the following identity must hold:

qi1 ¼ 1� UðZ2Þ:

With the asset value process for each issuer and the correlation between the
asset value processes of two issuers given, the joint migration behavior can be
computed from a joint bivariate normal distribution of the asset returns under
their asset correlation:

qðqAaj ^ qBbkÞ ¼ q Zjþ1
�

< RA < Zj; Zkþ1 < RB < Zk

�

¼
Z Zj

Zjþ1

Z Zk

Zkþ1

/ðrA; rB;RÞdrB drA;

where /ðrA; rB;RÞ denotes the density function of the bivariate normal distri-
bution for the asset returns rA and rB and R the covariance matrix between A
and B derived from their equity correlation. Converting the computed joint
asset returns then into credit ratings according to the before-derived asset re-
turn thresholds, the formula directly provides the joint rating behavior between
two obligors for all possible rating combinations.

The elements of the transition matrix therefore provide an easy recipe for
simulating credit migrations for credit risk applications. Given a set of tran-
sition probabilities for each credit rating, the critical distances can be calcu-
lated for each rating category. For a portfolio of credits, the changes in
underlying asset values can be simulated easily. The asset value changes can be
compared to critical distances to determine ratings transitions for each asset.
The ratings transitions (of which default is a specific case) are correlated due to
the correlation in asset value changes between firms through the systematic risk
factor.

Hence the problem of joint rating migrations has now been reduced to the
problem of estimating the asset return correlation between two issuers. Asset
return correlations, however, are also not directly observable and thus must be
approximated. CreditMetricsTM, for example, approximates asset return cor-
relations via equity correlations, using a market model to link equity correla-
tion to index correlation.

3. The ratings data

Here we describe some basic aspects of debt ratings obtained from the
Standard & Poor’s CreditProTM 3.0 database, as relevant for our subsequent
estimation of ratings transition matrices and their application to stress testing
credit portfolios.
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3.1. Basic properties

Our analysis takes advantage of the Standard & Poor’s CreditProTM 3.0
database, which contains issuer credit ratings history for 7328 obligors over the
period from January 1, 1981 to December 31, 1998 (see Fig. 3). The universe of
obligors is mainly large corporate institutions around the world. Ratings for
sovereigns and municipals are not included. The share of the most dominant
region in the data set, North America, has steadily decreased from 98% to 75%,
as a result of increased coverage of companies domiciled outside US (see Fig.
4). The obligors include both US and non-US industrials, utilities, insurance
companies, banks and other financial institutions and real estate companies.
The representation of financial services, insurance and real estate has increased,
while that of manufacturing, energy and utilities has decreased (see Fig. 5). The
database has a total of 38,588 obligor years of data excluding withdrawn
ratings, of which 469 ended in default yielding an average default rate of 1.22%
for the entire sample. On average, investment grade rated obligors were 72% of
the dataset (see Fig. 6).

To capture credit quality dynamics, the creditworthiness of obligors must be
assessed, as credit events typically concern a firm as a whole. Unfortunately,
published ratings focus on individual bond issues. Therefore, S&P implements
a number of transformations:

(i) Bond ratings are converted to issuer ratings. By convention, all bond
ratings are made comparable by considering the implied long-term senior

Fig. 3. Evolution of S&P rating universe over time.
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Fig. 5. Rating distribution by industry.

Fig. 4. Rating distribution by geography.
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unsecured rating, i.e. the rating a bond would hold if it were senior unse-
cured. 5 This rating is then considered the issuer rating.
(ii) Issuers are clustered into economic entities. This promotes correct repre-
sentation of credit quality dynamics by accounting for parent–subsidiary
links, mergers, acquisitions, and contractual agreements about recourse.

The transformations significantly improve the applicability of S&P’s ratings.
Nevertheless, the provided data needs additional adjustment to account for
sample size problems relevant for the estimation of transition matrices. Spe-
cifically, the CreditProTM database uses S&P’s letter rating scale including the
rating modifiers þ=�. Hence in total the database comprises 17 different rating
categories as well as the default (D) and the ‘‘not rated’’ (NR) state. Although
the rating modifiers provide a finer differentiation between issuers within one
letter rating category, they pose two problems: the sample size of issuers per
rating class including rating modifiers is not sufficient for low rating categories,
causing small sample size concerns that affect statistical inference. Moreover,
transition matrices are generally published and applied without rating modi-
fiers, as this format has emerged as an industry standard. Therefore, we exclude
the rating modifiers in the course of this paper. Consequently, for example, we
consider BBBþ and BBB� ratings as BBB ratings. This methodology reduces
the database from 17 to 7 rating categories, which ensures sufficient sample sizes
for all rating categories. 6 After these transformations, the universe provided

Fig. 6. Average ratings distribution.

5 For a detailed discussion of conversion criteria, see Standard & Poor’s (1999).
6 For a discussion of ratings dynamics for 17 states, see Bahar and Nagpal (2000).
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by S&P encompasses the rating histories of 7328 holders of S&P ratings from
1981 to 1998. This translates into nearly 166,000 obligor quarters of data.

3.2. Selection of samples for estimation of transition matrices

Subsequently we will estimate and use both conditional and unconditional
ratings transition matrices. By conditional, we refer to conditioning on the
stage of the business cycle, expansion or contraction. By unconditional, we
refer to averaging across stages of the cycle.

We enforce three criteria in the estimation of transition matrices. First,
because our interest is partly in unconditional transition probabilities, the
sample period should encompass both expansions and contractions. 7 Second,
a minimal sample size threshold has to be met at all times to ensure statistical
reliability of the estimates. Third, the time-t transition matrix should reflect the
time-t rating universe, as opposed to some outdated sample that is no longer
representative.

It might be desirable to estimate transition matrices based on a constant
sample over a given period of time. We could, for example, track the 1981
universe from 1981 through 1998, leaving aside new firms that received their
first rating after the beginning of 1981. This approach suffers from several
problems. First, any given cohort quickly becomes outdated and hence less
interesting as new issuers emerge, mergers and acquisitions transpire, and some
industries decline while others flourish. Second, the fundamental characteristics
of the underlying firms would evolve over time, producing results of dubious
interpretation. 8 Third, the statistical size of a cohort would fall below the
threshold level as issuers perish, default or retire their rating over time, for
example by calling their outstanding debt.

We could attempt to mitigate the problems associated with tracking a fixed
cohort simply by using a recently formed cohort. The resulting estimates,
however, would reflect only the current economic situation, which might be
purely expansion or purely contraction.

Alternatively, we could allow the sample composition to vary over time,
incorporating new issuers and discarding those who default. We could, for
example, use all issuers outstanding as of January 1, 1981 to estimate the 1981
transition matrix, all issuers outstanding as of January 1, 1982 to estimate the
1982 transition matrix, and so on. This procedure helps ensure that the sample
size is always large enough to facilitate sharp statistical inference, that new

7 We will use the term ‘‘contraction’’ and ‘‘recession’’ interchangeably.
8 Altman and Kao (1991), for example, show that the migration drift is dissimilar between

issuers from manufacturing vs. financial institutions and public utilities. In addition they find that

there are non-negligible differences between the transition probabilities of the 1970s and 1980s.
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firms are included in the sample, and that average transition matrices incor-
porate all states of the economy. We shall use this method.

3.3. Treatment of transitions to not rated status

Before proceeding to estimate transition matrices, we must deal with tran-
sitions to NR status. A total of 2447 companies were classified as NR from
January 1981 to December 1998. Transitions to NR may be due to any of
several reasons, including expiration of the debt, calling of the debt, failure to
pay the requisite fee to S&P, etc. Unfortunately, however, the details of indi-
vidual transitions to NR are not known. In particular, it is not known whether
any given transition to NR is ‘‘benign’’ or ‘‘bad.’’ Bad transitions to NR occur,
for example, when a deterioration of credit quality known only to the bond
issuer (debtor) leads the issuer to decide to bypass an agency rating.

There are at least three methods for removing NR’s from the dataset. The
first method is conservative and proceeds by treating transitions to NR as
negative information regarding the change in credit quality of the borrower.
Here the probability of transitioning to NR is distributed amongst downgraded
and defaulted states in proportion to their values by allocating NR values to all
cells to the right of diagonal. The second method is liberal and treats transi-
tions to NR status as benign. The probability transitions to NR are distributed
among all states, except default, in proportion to their values. This is achieved
by allocating the probability of transiting to NR to all but the default column.
The third method, which has emerged as an industry standard, treats transi-
tions to NR status as non-information. The probability of transitions to NR is
distributed among all states in proportion to their values. This is achieved by
gradually eliminating companies whose ratings are withdrawn. We use this
method, which appears sensible and allows for easy comparisons to other
studies. 9

Having reviewed the basic properties of the ratings data, we now proceed to
the primary object of interest, migration matrices, which are constructed from
the ratings data.

4. Estimation and properties of migration matrices

4.1. The migration matrix

Conditional upon a given grade at time T, the transition, or migration,
matrix M is a description of the probabilities of being in any of the various

9 See, for example, the discussion in Carty (1997).
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grades at T þ 1. It thus fully describes the probability distribution of grades at
T þ 1 given the grade at T. We seek to estimate the 7	 7 ¼ 49 unique elements
of M, a conceptual rendition of which appears in Fig. 7.

4.2. Transition horizon

Theoretically, transition matrices can be estimated for any desired transition
horizon. As the ongoing coverage follows at least a quarterly review pattern,
transition matrices estimated over short time periods best reflect the rating
process. The shorter the measurement interval, the fewer rating changes are
omitted. However, shorter duration also results in less extreme movements, as
large movements are often achieved via some intermediary steps.

The other factor determining the transition horizon is the application pur-
pose. For the calculation of credit risk exposures by portfolio models, a one-
year transition horizon is standard. Other applications such as the pricing of
credit derivatives require shorter horizons; however in practice only annual
transition matrices are typically used as shorter transition horizons have yet to
be published by the rating agencies. 10

Although the first two arguments clearly vote in favor of short-term tran-
sition matrices, matrices estimated over longer time periods offer the advantage

Fig. 7. Structure of the transition matrix.

10 Current credit derivatives pricing models, as e.g. the JLT framework, solve the problem of

relatively long transition horizons by calculating probability intensities, i.e. continuous time

probabilities, from the one-year matrix.
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of less noise inherent in the data, as short-term noise cancels itself out for
longer horizons. It is noteworthy that matrices for longer transition horizons
inhibit a trade-off between overlap and sample size. For instance S&P calcu-
lates two-year transition matrices for every year; for 18 years of data this re-
sults in 17 biannual matrices. However, overlap induces the problem of double
counting. In fact by applying S&P’s method, rating events in the middle of the
data series receive a higher weight than the rating behavior in the first and final
period. Thus in the course of the paper longer horizon matrices are calculated
using non-overlapping periods although this results in fewer data points, e.g.
only nine in contrast to 17 in case of the two-year matrices. 11

4.3. Unconditional estimates of M

Before proceeding to any conditional estimates of the migration matrix M,
we consider first their unconditional estimates. Specifically we present the
unconditional estimates of the global quarterly and annual matrices, shown
below in Tables 1 and 2. As expected, the transition matrices exhibit higher
default risk and higher migration volatility for lower quality grades. Specifi-
cally we see that default likelihood increases exponentially with decreasing
grade.

A characteristic of all matrices is the high probability load on the diagonal:
obligors are most likely to maintain their current rating. Considering the rating
transition probability distribution of an obligor given its initial rating, the
second largest probabilities are usually in direct neighborhood to the diagonal.
In general, the further away a cell is from the diagonal, the smaller is the
likelihood of such an occurrence. This rule has frequently been addressed
as monotonicity (J.P. Morgan, 1997, p. 73). However, the annual transition
matrix depicts some exceptions. For A-, BBB-, and B-rated issuers, the like-
lihood of defaulting is larger than the likelihood of ending with a CCC rating.
Conversely, the probability for a CCC issuer to attain an AAA next year is
higher than the chance of being upgraded to AA. There is no single explanation
for these violations of monotonicity. For medium quality categories the vio-
lations are weaker or even non-existent for smaller transition horizons, sug-
gesting the violations to be a result of intra-interval rating activity omissions
inherent in longer transition horizons. The inconsistency for the CCC category
might be attributable to noise in the underlying data. However, it is
noteworthy that recent articles have challenged the assumption of strict
monotonicity as partially unreasonable since ‘‘. . . certain CCC-rated firms are
‘do-or-die’ type firms. Their very risky nature makes them highly default prone,

11 In order to implement the non-overlapping method, the first two years of data, i.e. 1981 and

1982, are omitted in the derivation of the four-year transition matrix.
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but if successful they have a significant chance of skipping a few categories on
their way to higher ratings’’ (Lando, 1998, p. 151). Moreover, with increasing
transition horizon the violation of (row) monotonicity for the default rates
becomes more prominent. This is expected since default is an absorbing state.

We have noted that the sample is concentrated along the diagonal; the
observation density diminishes rapidly as we move away. We can display the
level of parameter uncertainty by computing the coefficient of variation of each
cell. The reliability of the cell values decreases as we move farther from the
diagonal as we see in Fig. 8 below.

Many of the recently developed credit risk models assume the credit mi-
gration process to be Markovian; more precisely, the distribution of default
time is modeled via a ‘‘. . . discrete time, time-homogeneous finite state space
Markov chain’’ (Jarrow et al., 1997, p. 487). Here we assess whether ratings
dynamics are Markovian in two ways: analysis of eigenvectors and eigenvalues,
and analysis of path dependence.

Table 1

Unconditional quarterly migration matrix

AAA AA A BBB BB B CCC D

AAA 97.92% 1.95% 0.10% 0.02% 0.01% – – –

AA 0.16% 97.95% 1.75% 0.10% 0.01% 0.02% 0.00% –

A 0.02% 0.57% 97.91% 1.34% 0.10% 0.06% 0.00% 0.00%

BBB 0.01% 0.07% 1.37% 96.90% 1.38% 0.23% 0.02% 0.03%

BB 0.01% 0.03% 0.17% 1.87% 95.35% 2.26% 0.18% 0.13%

B – 0.02% 0.07% 0.11% 1.66% 95.72% 1.46% 0.96%

CCC 0.04% – 0.16% 0.20% 0.41% 3.28% 87.18% 8.72%

Average

default rate

0.284%

Table 2

Unconditional annual migration matrix

AAA AA A BBB BB B CCC D

AAA 91.93% 7.46% 0.48% 0.08% 0.04% – – –

AA 0.64% 91.81% 6.75% 0.10% 0.06% 0.12% 0.03% –

A 0.07% 2.27% 91.69% 5.11% 0.56% 0.25% 0.01% 0.04%

BBB 0.04% 0.27% 5.56% 87.88% 4.83% 1.02% 0.17% 0.24%

BB 0.04% 0.10% 0.61% 7.75% 81.48% 7.89% 1.11% 1.01%

B – 0.10% 0.28% 0.46% 6.95% 82.80% 3.96% 5.45%

CCC 0.19% – 0.37% 0.75% 2.43% 12.13% 60.45% 23.69%

Average

default rate

1.215%
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4.3.1. Analysis of eigenvalues and eigenvectors
One of the most common ways of testing the Markovian property of a

matrix is through eigenvalue and eigenvector analysis. All transition matrices
have a trivial eigenvalue of unity; this eigenvalue also has the highest magni-
tude and stems from the symmetry in the matrix (all rows add up to unity since
all transition probabilities sum to one). The remaining set of eigenvalues of the
transition matrix have magnitudes smaller than unity. A transition matrix can
be taken to the kth power by simply splitting the matrix into its eigenvalues and
eigenvectors and taking the eigenvalues to the kth power while leaving the
eigenvectors unchanged. Thus for transition matrices to follow a Markov chain
process, two conditions have to be met. First, the eigenvalues of transition
matrices for increasing time horizons need to decay exponentially. In other
words, if all the eigenvalues, ei, of (empirical) transition matrices (of varying
time horizon) were ranked in order of their magnitude, one should observe a
linear relationship between logðeiÞ and the transition horizon T for each i.
Second, the set of eigenvectors for each transition matrix need to be identical
for all transition horizons.

Using such an eigenanalysis, we found it very difficult to reject first-order
Markov structure. 12 Fig. 9 displays the second, third, and fourth largest
eigenvalues of transition matrices with transition horizons varying from
one quarter to four years. The calculated eigenvalues do in fact show a strong

Fig. 8. Coefficient of variation for one-year transition horizon.

12 A battery of other tests is conducted by Kronimus and Schagen (1999), with the same

conclusion as we report here.
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log-linear relationship with the transition horizon, thus providing strong evi-
dence for the assumption of Markov properties.

The structure of the eigenvector corresponding to the second largest ei-
genvalue provides key insight on the dynamics of ratings migration. Specifi-
cally, it indicates the long-term (asymptotic) distribution of companies not
ending in default and thus the direction of rating convergence of the surviving
population. As Fig. 10 demonstrates, all 2nd eigenvectors peak at ‘A’ rating
and share a fairly similar shape. Hence, independent from the transition ho-
rizon, the long-term survivor distribution trends towards the middle rating
classes. The similarity of the 2nd eigenvectors fails to reject the Markov as-
sumption.

4.3.2. Path dependence
Although the standard tests reported above fail to reject the Markov

property of the transition matrices, a key assumption in many applications in
credit risk, a more careful analysis reveals path dependence, which is a clear
violation of first-order Markov behavior. In a first-order Markov chain process
next period’s distribution is only dependent on the present state and not on any
developments in the past. In other words, transitions have only a one-period
memory. 13

Fig. 9. Decay of eigenvalues with transition horizon.

13 Previous research has also provided some indication of a rating memory, though only for

Moody’s data. See Carty and Fons (1993).
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It is useful to define the notion of memory. Path dependence ‘‘. . . presup-
poses that prior rating changes carry predictive power for the direction of
future rating changes’’ (Carty and Fons, 1993). The initial hypothesis is that
issuers that have experienced prior downgrading are prone to further down-
grading, while issuers that have been upgraded before are less frequently
downgraded. The momentum is captured through the directional movements
in the path period, defined for simplicity to be one year, i.e. specific transition
matrices are computed for issuers that have been upgraded, remained un-
changed, or have been downgraded in the previous period. 14 Specifically, the
cohort of companies each year was separated into three subgroups according
to their rating experience in the previous year: upward trending, downward
trending and no trend. Each subcohort was followed for a year to observe
rating transition probabilities for upgrade, downgrade and no ratings change.
The results are summarized in Table 3.

This momentum hypothesis is supported by the data as most downgrade
probabilities for the down-momentum matrix are larger than the correspond-
ing values in the unconditional matrix. The exact opposite is true for the

Fig. 10. Second eigenvector of matrices with different transition horizons.

14 A detailed analysis is given in Kronimus and Schagen (1999).
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up-momentum matrix, which exhibits smaller downgrade probabilities than the
unconditional matrix. The upgrade probabilities of the up-momentum matrix
for below investment grade classes are higher than for the unconditional ma-
trix, while for investment grade categories they are lower. Overall, reduced
upgrading and downgrade probabilities for the up-momentum matrix lead to
an increased probability mass on the diagonal, while the down-momentum
matrix displays the exact opposite. Only the maintain-momentum matrix does
not display a systematic trend nor differs to a large extent from the uncondi-
tional matrix. This is however fairly intuitive, as the universe used for the
calculation of the unconditional matrix consists to nearly 90% of issuers whose
ratings did not change in the previous period, resulting in significant data
overlap.

The most striking finding, however, is the extreme difference in average
default rates. The down-momentum average default rate is nearly five times as

Table 3

Path dependent transition matrices

Initial

rating

(%)

Terminal rating (%) No. of

issuer

periods
AAA AA A BBB BB B CCC D

Up-momentum transition matrix

AAA 92.45 5.66 1.89 – – – – – 53

AA 0.39 95.33 4.28 – – – – – 257

A 0.26 1.29 93.54 4.91 – – – – 387

BBB – – 3.78 90.12 4.94 0.87 – 0.29 344

BB – – 1.38 8.30 85.81 3.46 0.69 0.35 289

B – – 1.96 5.88 5.88 82.35 1.96 1.96 51

CCC – – – – – – – – –

Maintain-momentum transition matrix

AAA 91.84 7.58 0.48 0.05 0.05 – – – 2070

AA 0.58 91.60 7.02 0.60 0.07 0.12 – – 5642

A 0.06 2.29 91.56 5.20 0.60 0.26 – 0.03 9308

BBB 0.06 0.33 5.96 87.57 4.53 1.12 0.23 0.19 5183

BB 0.06 0.13 0.50 9.11 80.43 7.60 1.07 1.10 3173

B – 0.16 0.29 0.42 8.38 80.82 3.76 6.17 3113

CCC – – – 0.77 1.54 12.31 70.00 15.38 260

Down-momentum transition matrix

AAA – – – – – – – – –

AA 0.60 90.48 7.74 0.60 – 0.60 – – 168

A – 0.93 93.02 5.12 0.47 0.23 – 0.23 430

BBB – 0.18 5.42 85.90 6.69 1.27 – 0.54 553

BB – – 1.12 7.30 79.21 8.71 1.69 1.97 356

B – – 0.24 0.73 6.05 75.79 7.99 9.20 413

CCC 0.52 – 1.05 0.52 4.19 9.95 42.93 40.84 191

Note: Highlighted cells denote significance on a 95% confidence level (one tailed).
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large as the unconditional one, whereas the up-momentum average default rate
is less than one fifth of the unconditional expectation. Thus the default
probability is most sensitive to a prior downgrading history. 15

Why does this matter? One particular example is the pricing of credit sen-
sitive securities. Such instruments typically employ individual obligations as
underlying so that the momentum of an issue might have a significant effect on
value. 16 Beyond this example, any instrument with an asymmetric payoff
structure, such as options on the yield spread, should be affected by both the
increased negative drift for issuers with a down momentum and the increased
volatility of migration in general.

5. Expansions and contractions: Conditioning transition matrices on the stage of

the business cycle

For more than a century, scholars have productively divided the cycles in
real economic activity into separate phases or regimes, in particular treating
expansions separately from contractions. Burns and Mitchell (1946) is a sem-
inal work, and Hamilton (1989) is a rigorous modern econometric character-
ization. Recent evidence, moreover, suggests that parallel regime switching
structures may exist in financial markets. Regime switching has been found, for
example, in the conditional mean dynamics of interest rates (Hamilton, 1988;
Cecchetti et al., 1990) and exchange rates (Engel and Hamilton, 1990), and in
the conditional variance dynamics of stock returns (Hamilton and Susmel,
1994). Following this tradition, we now assess whether credit rating transition
matrices differ across expansions and contractions, and we investigate the
credit risk management implications of any such shifting.

5.1. Expansion and contraction transition matrices

In seeking to explain ratings volatility generally and default volatility spe-
cifically, we view asset return volatility through a CAPM lens as described in
more detail in Section 2. Total volatility (risk) is composed of a systematic and
an idiosyncratic component. Because ratings are a reflection of a firm’s asset
quality and distance to default, a reasonable definition of ‘‘systematic’’ is the
state of the economy. The simplest way of characterizing this state is one of

15 Extreme default rates might be even amplified by more than a factor of five because of the

higher volatility of the average down-momentum default rate and the highly right-skewed and

platykurtic character of EDF probability distributions, as discussed in Koyluoglu and Hickman

(1998).
16 The effect on a portfolio of risky debt would be much smaller as the different momentums of

several issuers might cancel one another.
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expansion and contraction. Considering that US issuers account on average for
88% of the total rating universe between 1981 and 1998, it appears appropriate
to focus the analysis exclusively on US issuers and US economic indices.

The National Bureau of Economic Research (NBER) has categorized each
month since 1959 into either an expansion or contraction state. 17 Because our
highest frequency is quarterly, we in turn label each quarter in our sample
period of 1981Q1–1998Q4 as expansion or contraction following NBER’s own
definitions. We proceed to re-estimate the migration matrix M: we obtain ME

and MC, the expansion and contraction migration matrices.
The first question to ask is whether the expansion and contraction matrices

are different. The results appear in Table 4. The numbers in bold are signifi-
cantly different at the 5% level from the unconditional matrix.

The most striking difference between the expansion and contraction matrices
are the downgrading and especially the default probabilities that increase sig-
nificantly in contractions. For the credit grade B the default frequency doubles
from an average of 0.9% in expansions to 1.8% in contractions.

However, not only do extreme migrations become more probable in eco-
nomic contractions, but also the downgrading to neighboring classes is much
more likely. On the other hand most upgrade probabilities remain constant or
even decrease during contractions. Finally, it is noteworthy that comparatively
small deviations on a quarterly basis result in significant differences over a one-
year horizon.

Next we examine parameter volatility by computing the coefficient of vari-
ation of each cell for ME and MC. We see the clear emergence of two regimes
as evidenced by the dramatic reduction in this parameter uncertainty.

As Fig. 11 demonstrates, most of the coefficients of variation of the con-
traction matrix are much lower than those of the unconditional one. While for
the expansion matrix the coefficients of variation are on average reduced by
only 2% compared to the unconditional matrix, the contraction matrix exhibits
about 14% less volatility. Furthermore it is striking that many of the largest
reductions in coefficients of variation for the contraction matrix actually stem
from elements on or close to the diagonal supporting the reliability of the re-
sults. It is also noteworthy that the coefficients of variation of the default
probabilities decrease even further (by 40% and more), indicating that these
time series are particularly distinct between the economic states. Overall, these
results reveal that migration probabilities are more stable in contractions than
they are on average, supporting the existence of two distinct economic regimes.

17 The NBER business cycle chronology is constructed from a subjective examination of the

concordance of a large number of business indicators – a much greater variety of series than those

included, for example, in the components of real aggregate output.
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The findings so far indicate that the rating universe should develop differ-
ently in contraction periods compared to expansion times. This is further
corroborated by considering the long-term behavior in form of 2nd eigenvalues
and eigenvectors. A lower 2nd eigenvalue in contractions, for example, would
imply more rapid credit quality deterioration. Different 2nd eigenvectors be-
tween expansions and contractions would indicate that the survivor population
trends towards a different distribution.

The 2nd eigenvalues in fact depict a clear difference between expansions
and contractions. The contraction eigenvalue is substantially smaller than the

Fig. 11. Coefficients of variation of US contraction transition.

Table 4

US expansion and contraction transition matrices

Initial

rating

(%)

Terminal rating (%) No. of

issuer

periods
AAA AA A BBB BB B CCC D

1/4-year US expansion matrix

AAA 98.21 1.66 0.11 0.02 0.02 – – – 6581

AA 0.15 98.08 1.61 0.12 0.01 0.03 0.01 – 19458

A 0.02 0.53 98.06 1.21 0.11 0.06 0.00 0.00 36404

BBB 0.01 0.07 1.47 96.94 1.25 0.22 0.02 0.02 24529

BB 0.01 0.03 0.19 1.93 95.31 2.25 0.16 0.12 18161

B – 0.02 0.07 0.10 1.70 95.91 1.31 0.88 20002

CCC 0.05 – 0.19 0.23 0.47 3.57 87.32 8.17 2129

1/4-year US recession matrix

AAA 97.99 1.76 0.25 – – – – – 795

AA 0.18 96.89 2.79 0.05 0.09 – – – 2186

A 0.02 0.88 96.44 2.59 0.07 – – – 4330

BBB 0.04 0.04 1.11 96.31 2.33 0.07 – 0.11 2708

BB – 0.06 0.06 1.39 94.98 2.72 0.42 0.36 1655

B – 0.06 0.06 0.11 0.72 95.02 2.27 1.77 1806

CCC – – – – – 1.20 85.60 13.20 250

Note: Highlighted cells denote significance on a 95% confidence level (one tailed).
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expansion one. On a yearly basis, the contraction eigenvalue is only 0.97 vs.
0.99 for the expansion matrix. When recalling that the 2nd eigenvalue is taken
to the kth power for the kth period population distribution, the difference
indeed results in a much faster decay for the contraction matrix.

The 2nd eigenvector of the quarterly US contraction matrix is also very
different from the 2nd eigenvector of the US unconditional and expansion
matrices (see Fig. 12). The system no longer tends towards the ‘‘A’’, but to-
wards the ‘‘BBB’’ category. Moreover the population evolution in contractions
displays significantly fewer issuers in the investment grade categories and more
issuers in the below investment grade classes than in expansion.

5.2. Regime switching

We have seen distinct differences between the US expansion and contraction
transition matrices. The straightforward application of these matrices however
would normally be restricted to situations where the future state of the econ-
omy over the transition horizon under consideration is assumed to be known.
Since in reality this is never the case, it might be useful to view this problem
through the lens of regime switching matrices. 18 It would be straightforward
to link the regime switching and different transition matrices. Moreover, gen-

Fig. 12. Second eigenvector of US expansion and contraction matrices.

18 For an introduction, see Diebold and Rudebusch (1999, pp. 117–143).
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eral changes in business cycles, such as longer cycle durations or changing
transition probabilities, might be easily incorporated by simply adapting the
regime switching matrix.

Regime switching matrices in their simplest form are 2	 2 matrices that
depict the probability of being in an expansion or contraction next period
conditional upon the current regime. The monthly expansion and contraction
definitions of the NBER can be aggregated into quarterly and yearly expansion
and contraction classifications. Given the small sample size of only three yearly
contraction matrices, we focus on quarterly data. This 2	 2 regime switching
matrix is estimated twice: first, employing the entire NBER data from 1959 to
1998 and second using only the NBER data from 1981 to 1998.

Table 5 highlights that the last two decades have seen few contractions in
relation to the entire economic history over the last 40 years. This becomes
even clearer when comparing the steady states of the two regime switching
matrices. While the 1981–1998 regime switching matrix implies that on average
17.8% of all quarters are contraction quarters, the 1959–1998 regime switching
matrix predicts 20.9% of all quarters to be contractions, indicating that the
economic development over the last 20 years has been relatively favorable.
Moreover, recessions seem to be getting shorter as evidenced by the maintain
probability declining from 42.4% (1959–1998) to 30.8% (1981–1998).

5.2.1. Regime switching simulation
A combination of the regime switching matrix estimated over the same

sample period as our S&P data, namely 1981–1998, and the expansion and
contraction matrices should yield the same credit quality distribution as the
unconditional migration matrix. Given a structurally different history of busi-
ness cycles over the last 20 years, the unconditional transition matrices, which
are estimated based on data from 1981 onwards, also imply the recent regime
characteristics with short contractions and long expansions. When forecasting
credit quality developments using an unconditional matrix, one implicitly
assumes the favorable business cycle pattern to be persistent going forward. If
however one deems the structural change in business cycles to be a temporary
effect and the long-term estimate to be the best predictor of future regime
switching, the unconditional matrix would overstate the overall credit quality
evolution.

Table 5

Quarterly regime switching matrices

Regime switching: 1959–1998 Regime switching: 1981–1998

Expansion Recession. Expansion Recession

Expansion 84.8% 15.2% 85.0% 15.0%

Recession 57.5% 42.4% 69.2% 30.8%
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The following Monte Carlo simulation investigates the effect using the (more
pessimistic) long-term regime switching behavior on a given rating distribution
and compares the results to the unconditional distribution outcome. Specifi-
cally, the 1959–1998 regime switching matrix is combined with the expansion
and contraction matrices to get an estimator of credit quality dynamics for a
period from 1959 onwards. Fig. 13 summarizes the Monte Carlo exercise after
100 runs.

As expected, the trajectory of defaults for the unconditional transition
matrix understates the cumulative percentage of defaulted companies. The
deviations between the regime switching and the unconditional simulation
however are relatively small over short-term horizons, e.g. with a difference of
only 40 basis points after three years. Over longer time horizons however, the
differences become more prominent, amounting to 180 basis points after 15
years. In order to infer statements about the overall trend in credit quality
evolution, the rating populations are compared.

Fig. 13 also displays the rating distribution for both simulations after five
years. The fraction of issuers in default is understated by the unconditional
transition matrix. The difference in probability mass mainly stems from an
overstated fraction of A-rated companies. Thus, it seems fair to state that the
unconditional transition matrix, estimated, after all, during the recent more
robust economic experience, indeed overestimates the credit quality develop-
ment, though only to a rather limited extent in the short run.

In summary, the assumption of business cycle structures reverting to the
historical long-term estimate does not introduce significantly different results
for the evolution of credit quality over the short term. For longer horizons
however, the regime switching approach might supplement the unconditional
expectation.

6. Incorporating business cycle views into credit portfolio stress tests

The results presented so far could enhance numerous credit risk operations.
First, the design of stress test scenarios can be guided by the observed behavior

Fig. 13. Trajectory of defaults and population after five years.
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of default and transition probabilities. This could be implemented by not only
simulating the term structure of default but by also employing varying tran-
sition matrices in order to incorporate the uncertainty in credit risk models.

Second, the state of the economy clearly is one of the major drivers of
systematic credit risk, especially as lower credit classes are much more sensitive
to macroeconomic factors. Consequently it should be integrated into credit risk
modeling whenever possible, otherwise the downward potential of high-yield
portfolios in contractions might be severely underestimated. Moreover, inter-
nal credit grading systems calibrated on EDFs measured only in expansion
times, such as the 1990s, might result in mispriced loans or even suboptimal
capital allocation in the lending business. Consequently, these measures need
to be calibrated in order to reflect cycle-neutral parameters.

Third, the currently dominant unconditional view of credit risk can be ex-
tended to a conditional perspective. Current applications rarely use more than
an unconditional matrix, often times misrepresenting the underlying portfolio
of issuers. Modern credit risk models such as CreditMetricsTM account for
different industries only through different term structures, but not through
industry dependent transition matrices. The same holds true for different re-
gions. Adding the additional information can yield substantially different credit
exposures as we will demonstrate below.

Fourth, a forecasting model for transition matrices can be constructed on
the basis of the revealed dependencies on macroeconomic indices and interest
rates. Such a model could also incorporate additional information such as the
momentum path or regime switching probabilities.

6.1. Bank capitalization

The purpose of capital is to provide a cushion against losses for a financial
institution. There are two distinct approaches to calculating capital: a regula-
tory one which uses simple rules (e.g. for a loan to a corporate entity, 8%
capital must be assigned) to arrive at regulatory capital, and an economic one
which relies more on first principles and formal models to calculate economic
capital. While both approaches are trying to achieve the same end, inevitably
the regulatory approach is a cruder approximation. Moreover, modern fi-
nancial instruments such as credit derivatives allow for substantial regulatory
arbitrage, all of which has heated the debate of migrating towards a models-
based approach to computing credit risk capital, much as has already hap-
pened for market risk. 19

Much as in market risk, the economic capital in credit risk is commensurate
with the risk appetite of the financial institution. This boils down to choosing a

19 See for instance Mingo (2000) and the references cited therein.
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confidence level in the loss (or value change) distribution of the institution with
which senior management is comfortable. For instance, if the bank wishes to
have an annual survival probability of 99%, this will require less capital than a
survival probability of 99.9%, the latter being typical for a highly rated bank.
The loss (or value change) distribution is arrived at through internal CPMs.
Even if regulators do not assign capital according to such models, they still
serve as a valuable tool for managers.

The relation between actual 20 and regulatory capital is obvious. If actual
capital exceeds regulatory capital, there is room to expand the bank’s activities
or return capital to the shareholders. If the reverse is true, then the bank needs
to contract risk-taking activities or raise more capital. Thus financial institu-
tions treat regulatory capital largely as a constraint. However, the more likely
situation is when actual and regulatory capital broadly match. Then if eco-
nomic capital exceeds both regulatory and actual capital, the regulatory rules
likely under-estimate the risk inherent in the bank’s activities and the institution
may nevertheless want to scale back its risk-taking activities. If, on the other
hand, economic capital is less than both regulatory and actual capital, the risk
of institution’s activities are actually over-estimated by the regulatory rules and
there is probably scope for the bank to take on more risk. Alternately, in the
latter case financial institutions have often used regulatory capital arbitrage
techniques to reduce both the book and regulatory capital without any sig-
nificant affect in the economic capital.

6.2. A credit portfolio management example

Having motivated the importance of using formal models for determining
economic capital, consider now an example with one of the popular CPMs,
CreditMetricsTM, that follows an approach that was preciously described in
Section 2. It utilizes an unconditional transition matrix to determine asset re-
turn thresholds (or critical distances), and simulates the joint distribution of
underlying asset values. A cardinal input to the model is the grade migration
matrix as it describes the evolution of the portfolio’s credit quality. As an il-
lustration of stress testing, we analyze the impact on the portfolio value dis-
tribution of replacing the unconditional transition matrix with two conditional
matrices: the expansion or contraction matrix.

We constructed a bond portfolio with 148 exposures with a current exposure
of $154.6 MM which mimics the ratings distribution of the S&P US universe as
of January 1, 1998. The exposures range in maturities from one month to 16
years. Some have fixed and others have floating interest rates. Interest is paid

20 Also referred to as book capital, although actual capital may also include some additional

things.
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quarterly, semi-annually, or annually. Several exposures are denominated in
foreign currencies. As CreditManagerTM does not allow to input recovery
rates, we use the preset mean recovery rates and standard deviations from
Altman and Kishore (1996). We take the yield curves and credit spreads as of
February 17, 1998. We then ask the question: what is the portfolio value dis-
tribution one year hence if 1998 had been an expansion or a contraction year?
We generate this distribution with 100,000 simulations using CreditMetricsTM.
The value distribution is shown below in Fig. 14.

Financial institutions are more interested in the behavior of the portfolio
value distribution at the extreme lower end. Specifically for the calculation of
VaR, the possible losses on a 99% or 99.9% confidence level are the key figures.
Therefore Fig. 14 depicts only this region of the portfolio value distributions. It
clearly shows the much longer downward tail of the contraction distribution
and the overall higher probability to obtain values below the mean. The dif-
ferences are non-trivial, and this becomes even more poignant once we consider
the economic capital attribution as seen in Table 6. At the 99% confidence
level, the amount of economic capital needed for a contraction year is nearly
30% higher than for an expansion year. For the 99.9% level, roughly appro-
priate for an A-rating, the difference is about 25%!

Finally, the overall deviations can also be described by the overall losses, i.e.
expected appreciation minus unexpected losses, that might occur on a given
percentage level. While during an expansion the maximum loss in value at a
99.9% confidence level is $3.2 MM, it is $6.8 MM during a contraction – more

Fig. 14. Portfolio value distributions.
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than double! This result clearly demonstrates the importance of accounting
for business cycle effects when assessing the credit risk of a portfolio. Taking
into account that an AA-rated financial is expected to be able to withstand
losses even at a 99.97% confidence level, one can easily imagine how this dif-
ference becomes even more dramatic in these extreme regions of the value
distribution.

7. Summary, conclusions and directions for future research

Utilizing an extensive database of S&P issuer ratings, we have presented a
systematic study of rating migration behavior and its linkages to the macro-
economic conditions and asset quality. Our analysis suggests that first-order
Markovian ratings dynamics, while not strictly correct, provide a reasonable
practical approximation, so long as we allow for different transition matrices in
expansions and contractions.

We are not the first to note that ratings transition probabilities may vary
with the business cycle, and surely we are not the last. In an interesting con-
tribution done independently of this paper, for example, Nickell et al. (2000)
use Moody’s data from 1970 to 1997 to examine the dependence of ratings
transition probabilities on industry, country and stage of the business cycle
using an ordered probit approach, and they find that the business cycle di-
mension is the most important in explaining variation of these transition
probabilities. Our work complements, enriches and extends theirs, pointing in
particular to the potential usefulness of regime switching models in the context
of credit portfolio stress testing.

As for future research, at least two promising directions are evident. First,
for estimating actual credit risk as opposed to stress testing, one may weight
the simulations obtained under assumed takeoffs from expansion and from
contraction by p and ð1� pÞ, where p is the probability that the economy is
currently in expansion, obtained for example using the methods of Hamilton
(1989). Second, it is of obvious interest to extend out methods to countries
other than the US, whose typically less well developed business cycle chro-
nologies present a challenge for our approach.

Table 6

Economic capital attribution

Portfolio parameters

(all values in $ MM)

Transition matrix %D recession/

expansionExpansion Recession Unconditional

Mean value 163.8 163.3 163.7 �0.3
Economic capital (99%) 6.5 8.4 6.6 29.9

Economic capital (99.9%) 12.3 15.4 12.6 25.2
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